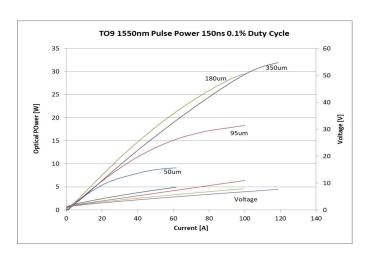


SemiNex delivers the highest available power at infrared wavelengths between 12xx and 19xx nm. When necessary we will further optimize the design of our InP laser chips to meet our customers' specific optical and electrical performance needs. Diodes, bars and packages are tested to meet customer and market performance demands. Typical results and packaging options are shown. Contact SemiNex for additional details or to discuss your specific requirements. Grin Lens f=171um used to match fast axis divergence to slow axis divergence. Tall Cap used.

TO-9 Packaged Laser Diode

High Power Single-Mode and Multi-Mode SemiNex Lasers

12xx to 19xx nm Custom Wavelengths Available Lensed Options Available

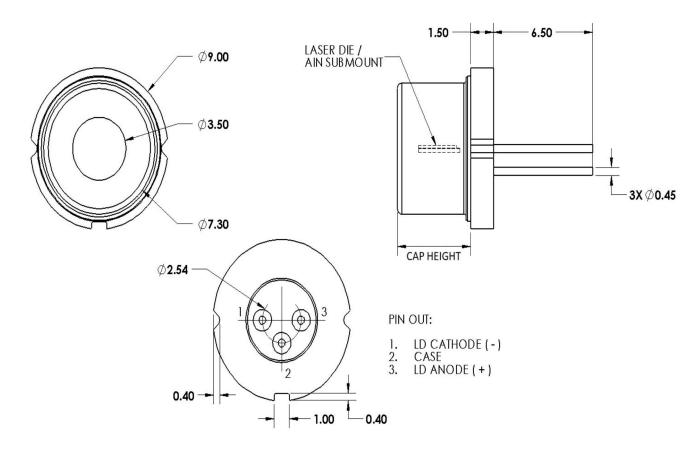

Applications

- OEM Medical
- Professional Medical
- LiDARMilitary / AerospaceIllumination

Features

- Cost effective
- High Output Power
- High Dynamic Range

- High Efficiency
 Standard Low Cost Package
 Fast axis divergence matched to slow axis
- Tall Cap used.



	Symbol	TO9-148-139	Units
Optical			
Wavelength	λ _C	1565	nm (±20)
Output Power (Pulsed)	P∘	24.00	watts
Chip Cavity Length	CL	2500	μm
Emitter Width	W	180	μm
Emitter Height	Н	1	μm
Spectral Width	δλ	15	nm 3dB
Slope Efficiency	η∘	0.25	W/A
Fast Axis Div.*	⊖_perp	14	deg FWHM
Slow Axis Div.	Θ_parallel	14	deg FWHM
⊟ectrical			
Power Conversion Eff.	η	3	%
Operating Current	l _{op}	80	A
Threshold Current	l _{th}	1	A
Operating Voltage	V_{op}	9.5	V
Series Resistance	R_{S}	0.14	ohm
Mechanical			
Weight		1.5	g
Operating Temp.**		-40 to 60	°C
Storage Temp.		-40 to 80	°C

Specified values are rated at a constant heat sink temperature of 20°C.
**Specified operating conditions are based on 20C heat sink temperature. High temperature operation will reduce performance and MTTF. Unless otherwise indicated all values are nominal.

Uncapped TO9 specifications assume heatsinking underneath laser chip.
Capped TO9 specifications assume heatsinking only on flat surface where pins extend.
*Pulsed Power measured at 150ns pulse width and 0.1% duty cycle.

All statements, technical information and recommendations related to the product herein are based upon information believed to be reliable or accurate. The accuracy or completeness herein is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. SemiNex Corporation reserves the right to change at any time without notice the design, specification, deduction, fit or form of its described herein, including withdrawal at any time of a product offered for sale herein. Users are encouraged to visit www.seminex.com for the latest data. SemiNex Corporation makes no representations that the products herein are free from any intellectual property claims of others. Please contact SemiNex for more information. © 2016 SemiNex Corporation

SemiNex Corporation • 100 Corporate Place • Peabody, MA 01960 • 978-326-7700 • Email: info@seminex.com • www.seminex.com

Date Created: Mar 20 2020 4:45AM UTC